Weak Convergence and Optimal Proposals for Monte Carlo Algorithms

نویسنده

  • Ali Zaidi
چکیده

Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithms and other popular MCMC algorithms induce a Markov chain which has the target distribution as its stationary distribution. Optimal scaling refers to the need to tune the parameters of the proposal kernel in order to ensure the Markov chain obtained from the algorithm converges as fast as possible to stationarity. Theoretical results for optimal scaling are obtained by approximating high dimensional algorithm trajectories by diffusions, and then maximizing the speed measure of the corresponding diffusion with respect to a transformation of the scale parameter. These notes summarize most of the literature regarding the optimal tuning of Markov chain Monte Carlo algorithms, and discuss the applications of these findings in practice. We have added an extensive appendix which summarizes some needed background to understand the proofs and concepts presented in the various papers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms

Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...

متن کامل

Convergence Rates for Adaptive Weak Approximation of Stochastic Differential Equations

Convergence rates of adaptive algorithms for weak approximations of Itô stochastic differential equations are proved for the Monte Carlo Euler method. Two algorithms based either on optimal stochastic time steps or optimal deterministic time steps are studied. The analysis of their computational complexity combines the error expansions with a posteriori leading order term introduced in Szepessy...

متن کامل

Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?

Quasi-Monte Carlo algorithms are studied for designing discrete approximations of two-stage linear stochastic programs. Their integrands are piecewise linear, but neither smooth nor lie in the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, are cont...

متن کامل

Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...

متن کامل

Quasi-Monte Carlo methods for linear two-stage stochastic programming problems

Quasi-Monte Carlo algorithms are studied for generating scenarios to solve two-stage linear stochastic programming problems. Their integrands are piecewise linear-quadratic, but do not belong to the function spaces considered for QMC error analysis. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011